$0.21 \times 0.20 \text{ mm}$

5059 measured reflections

 $R_{\rm int} = 0.021$

1849 independent reflections

1675 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[diaquabis[μ_2 -2,4-(dichlorophenoxy)acetato- $\kappa^2 O:O'$]iron(II)]

Wei-Bo Pan,^a Xiao-Hong Xu,^a Xiao-Hui Huang^a and Rong-Hua Zeng^{a,b}*

^aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and ^bKey Laboratory of Electrochemical Technology, of Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510631, People's Republic of China Correspondence e-mail: zrh321@yahoo.com.cn

Received 15 August 2008; accepted 12 September 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.097; data-to-parameter ratio = 13.5.

In the title compound, $[Fe(C_8H_5Cl_2O_3)_2(H_2O)_2]_n$, the Fe^{II} atom is located on an inversion center. It is coordinated by four O atoms from four 2,4-dichlorophenoxyacetate ligands and two water molecules, displaying a distorted octahedral geometry. The carboxylate groups of the 2,4-dichlorophenoxyacetate ligands link the Fe atoms, forming a polymeric layered network in the bc plane. Intralayer $O-H \cdots O$ hydrogen bonds enhance the stability of the two-dimensional network.

Related literature

For background on supramolecular networks, see: Eddaoudi et al. (2001); Rizk et al. (2005).

Experimental

Crystal data

$[Fe(C_8H_5Cl_2O_3)_2(H_2O)_2]$	V = 1031.0 (2) Å ³
$M_r = 531.92$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 17.604 (2) Å	$\mu = 1.29 \text{ mm}^{-1}$
b = 7.3122 (8) Å	T = 296 (2) K
c = 8.0312 (9) Å	$0.23 \times 0.21 \times 0.20$
$\beta = 94.258 \ (2)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.756, \ T_{\max} = 0.782$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	137 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
1849 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Fe1-O3 ⁱ Fe1-O2	2.1654 (17) 2.1697 (16)	Fe1–O1W	2.2297 (18)
$O3^{i}$ -Fe1-O2 $O3^{ii}$ -Fe1-O2	80.18 (6) 99.82 (6)	$O3^{ii}$ -Fe1-O1W $O2^{iii}$ -Fe1-O1W	90.64 (7) 91.25 (7)
O3 ⁱ -Fe1-O1W	89.36 (7)	O2-Fe1-O1W	88.75 (7)

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) -x, -y + 1, -z + 1.

Table 2

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W - H1W \cdots O1^{iv}$	0.82	2.41	3.051 (3)	135
$O1W - H2W \cdots O3^{m}$	0.82	2.08	2.797 (3)	145

Symmetry codes: (iii) -x, -y + 1, -z + 1; (iv) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors acknowledge South China Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2149).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.

Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.

Rizk, A. T., Kilner, C. A. & Halcrow, M. A. (2005). CrystEngComm, 7, 359-362

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, m1287 [doi:10.1107/S1600536808029279]

Poly[diaquabis[μ_2 -2,4-(dichlorophenoxy)acetato- $\kappa^2 O:O'$]iron(II)]

W.-B. Pan, X.-H. Xu, X.-H. Huang and R.-H. Zeng

Comment

The design, synthesis, characterization and properties of supramolecular networks formed by using functionalized organic molecules as bridges between metal centers are of great interest (Eddaoudi *et al.*, 2001; Rizk *et al.*, 2005). As a building block, 2,4-dichlorophenoxyacetate is an excellent candidate for the construction of supramolecular complexes. Recently, we obtained the title compound, a new coordination polymer.

In the title compound, the Fe^{II} atom is located on an inversion center and coordinated by four O atoms from four 2,4-dichlorophenoxyacetate ligands and two water molecules in an octahedral geometry (Fig. 1; Table 1). The Fe^{II} atoms are linked by 2,4-dichlorophenoxyacetate ligands to form a polymeric layered network in the *bc*-plane (Fig. 2). The two-dimensional network is further stabilized by intralayer O—H···O hydrogen bonds involving the coordinated water molecules and the O atoms from the ligands (Table 2). The adjacent Fe···Fe separation is 5.431 (4) Å.

Experimental

A mixture of FeCl₂ (0.127 g, 1 mmol), 2,4-dichlorophenoxyacetic acid (0.221 g, 1 mmol), NaOH (0.04 g, 1 mmol) and water (10 ml) was stirred vigorously for 20 min, and then sealed in a 20 ml Teflon-lined stainless steel autoclave. The autoclave was heated to and maintained at 433 K for 2 d, and then cooled to room temperature at 5 K h^{-1} to afford red block crystals.

Refinement

H atoms of water molecule were located in difference Fourier maps and fixed with $U_{iso}(H) = 1.5U_{eq}(O)$. C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 (CH₂) and 0.93 (CH) Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of the title compound, together with symmetry-related atoms to complete the coordination units. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i)-x, 1-y, 1-z; (ii) x, 1/2-y, 1/2+z; (iii) -x, 1/2+y, 1/2-z.]

supplementary materials

Fig. 2. View of the two-dimensional network in the title compound.

 $F_{000} = 536$

 $\theta = 1.7-28.0^{\circ}$ $\mu = 1.29 \text{ mm}^{-1}$ T = 296 (2) KBlock, colourless $0.23 \times 0.21 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.714 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

Cell parameters from 6377 reflections

$Poly[diaquabis[\mu_2-(2,4-dichlorophenoxy)acetato-\kappa^2O:O'] iron(II)]$

$[Fe(C_8H_5Cl_2O_3)_2(H_2O)_2]$ M _r = 531.92
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc a = 17.604 (2) Å b = 7.2122 (8) Å
b = 7.3122 (8) Å c = 8.0312 (9) Å $\beta = 94.258$ (2)°
$V = 1031.0 (2) \text{ Å}^3$ Z = 2

~	-	

Data collection

Crystal data

Bruker SMART APEXII CCD area-detector diffractometer	1849 independent reflections
Radiation source: fine-focus sealed tube	1675 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 296(2) K	$\theta_{\text{max}} = 25.2^{\circ}$
ϕ and ω scan	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -21 \rightarrow 17$
$T_{\min} = 0.756, T_{\max} = 0.782$	$k = -8 \rightarrow 8$
5059 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.097$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0473P)^2 + 1.0193P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
1849 reflections	$\Delta \rho_{max} = 0.49 \text{ e} \text{ Å}^{-3}$
137 parameters	$\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Fe1	0.0000	0.5000	0.5000	0.03073 (17)
Cl1	0.30460 (6)	0.78166 (12)	0.11801 (14)	0.0735 (3)
Cl2	0.46770 (6)	0.2467 (2)	0.43433 (14)	0.0928 (4)
C5	0.24797 (14)	0.4477 (4)	0.1746 (3)	0.0356 (6)
C4	0.31062 (16)	0.5621 (4)	0.1975 (4)	0.0431 (6)
C1	0.32151 (18)	0.2103 (5)	0.3170 (4)	0.0530 (8)
H1	0.3253	0.0913	0.3575	0.064*
C6	0.25386 (16)	0.2715 (4)	0.2358 (4)	0.0435 (6)
Н6	0.2122	0.1932	0.2226	0.052*
C2	0.38251 (18)	0.3256 (5)	0.3371 (4)	0.0565 (8)
C3	0.37794 (18)	0.5028 (5)	0.2792 (4)	0.0553 (8)
H3	0.4195	0.5812	0.2948	0.066*
01	0.18551 (10)	0.5189 (2)	0.0859 (2)	0.0385 (4)
02	0.07809 (9)	0.4569 (2)	0.3070 (2)	0.0323 (4)
C7	0.07058 (13)	0.3655 (3)	0.1753 (3)	0.0277 (5)
C8	0.12459 (15)	0.3979 (4)	0.0403 (3)	0.0367 (6)
H8A	0.1456	0.2812	0.0092	0.044*
H8B	0.0958	0.4467	-0.0575	0.044*
O3	0.01927 (10)	0.2497 (2)	0.1419 (2)	0.0407 (4)
O1W	0.09385 (11)	0.6384 (3)	0.6535 (2)	0.0416 (4)
H1W	0.1227	0.6879	0.5917	0.062*
H2W	0.0708	0.7130	0.7070	0.062*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0341 (3)	0.0280 (3)	0.0304 (3)	0.00233 (19)	0.0045 (2)	0.00195 (19)
Cl1	0.0771 (6)	0.0489 (5)	0.0935 (7)	-0.0269 (4)	-0.0007 (5)	0.0116 (4)
Cl2	0.0567 (6)	0.1397 (11)	0.0803 (7)	0.0293 (6)	-0.0068 (5)	0.0080 (7)
C5	0.0338 (13)	0.0400 (13)	0.0344 (13)	-0.0029 (11)	0.0113 (10)	-0.0048 (11)
C4	0.0430 (15)	0.0433 (15)	0.0439 (15)	-0.0095 (12)	0.0089 (12)	-0.0045 (12)
C1	0.0574 (19)	0.0538 (18)	0.0493 (17)	0.0108 (15)	0.0136 (14)	0.0055 (14)
C6	0.0434 (15)	0.0410 (15)	0.0474 (16)	-0.0046 (12)	0.0119 (12)	0.0001 (12)
C2	0.0435 (17)	0.081 (2)	0.0451 (17)	0.0115 (16)	0.0060 (13)	-0.0031 (16)
C3	0.0384 (16)	0.073 (2)	0.0546 (18)	-0.0126 (15)	0.0041 (13)	-0.0088 (16)
01	0.0344 (10)	0.0370 (10)	0.0444 (10)	-0.0064 (7)	0.0052 (8)	0.0011 (8)
O2	0.0327 (9)	0.0342 (9)	0.0305 (9)	-0.0017 (7)	0.0056 (7)	-0.0074 (7)
C7	0.0291 (12)	0.0234 (11)	0.0305 (12)	0.0049 (9)	0.0025 (9)	0.0012 (9)

supplementary materials

C8 O3	0.0369 (13) 0.0423 (10)	0.0429 (15) 0.0358 (10) 0.0412 (10)	0.0306 (12) 0.0456 (11)	-0.0072(11) -0.0128(8) 0.0042(0)	0.0052 (10) 0.0140 (8) 0.0020 (8)	-0.0047(11) -0.0149(8) 0.0052(0)
01	0.0413 (11)	0.0412 (10)	0.0419 (10)	0.0042 (9)	0.0030 (8)	0.0033 (9)
Geometric paran	neters (Å, °)					
Fe1—O3 ⁱ		2.1654 (17)	С1—Н	1	0.93	00
Fe1—O3 ⁱⁱ		2.1654 (17)	С6—Н	6	0.9300	
Fe1—O2 ⁱⁱⁱ		2.1697 (16)	C2—C	3	1.37	7 (5)
Fe1—O2		2.1697 (16)	С3—Н	3	0.93	00
Fe1—O1W		2.2297 (18)	01—0	8	1.41	7 (3)
Fe1—O1W ⁱⁱⁱ		2.2297 (18)	O2—C	7	1.25	60 (3)
Cl1—C4		1.728 (3)	С7—О	3	1.25	3 (3)
Cl2—C2		1.737 (3)	С7—С	8	1.51	3 (3)
C5—O1		1.368 (3)	С8—Н	8A	0.97	00
С5—С6		1.380 (4)	С8—Н	8B	0.97	000
C5—C4		1.386 (4)	O3—F	e1 ^{iv}	2.16	54 (17)
C4—C3		1.381 (4)	O1W-	-H1W	0.82	200
C1—C2		1.365 (5)	O1W-	-H2W	0.82	200
C1—C6		1.389 (4)				
O3 ⁱ —Fe1—O3 ⁱⁱ		180.0	C6—C	1—H1	120	.1
O3 ⁱ —Fe1—O2 ⁱⁱⁱ		99.82 (6)	С5—С	6—C1	120	.5 (3)
O3 ⁱⁱ —Fe1—O2 ⁱⁱⁱ		80.18 (6)	С5—С	6—H6	119.	8
O3 ⁱ —Fe1—O2		80.18 (6)	C1—C	6—H6	119.	8
O3 ⁱⁱ —Fe1—O2		99.82 (6)	C1—C	2—С3	121	.0 (3)
O2 ⁱⁱⁱ —Fe1—O2		180.0	C1—C	2—Cl2	119.	5 (3)
O3 ⁱ —Fe1—O1W		89.36 (7)	С3—С	2—Cl2	119.	4 (3)
O3 ⁱⁱ —Fe1—O1W		90.64 (7)	C2—C	3—C4	118.	8 (3)
O2 ⁱⁱⁱ —Fe1—O1W	7	91.25 (7)	C2—C	3—Н3	120	.6
O2—Fe1—O1W		88.75 (7)	C4—C	3—Н3	120	.6
O3 ⁱ —Fe1—O1W ⁱ	ii	90.64 (7)	С5—0	1—С8	117.	4 (2)
O3 ⁱⁱ —Fe1—O1W	iii	89.36 (7)	С7—О	2—Fe1	130	.51 (15)
O2 ⁱⁱⁱ —Fe1—O1W	/ ⁱⁱⁱ	88.75 (7)	O2—C	7—ОЗ	124	.9 (2)
O2—Fe1—O1W ⁱⁱ	i	91.25 (7)	02—0	7—С8	119.	4 (2)
O1W—Fe1—O1W	V ⁱⁱⁱ	180.00 (7)	O3—C	7—С8	115.	7 (2)
O1—C5—C6		125.3 (2)	01—0	01—C8—C7 114.6 (2)		6 (2)
O1—C5—C4	C5—C4 116.1 (2)		01—0	8—H8A	108	.6
C6—C5—C4	5—C4 118.6 (3)		С7—С	8—H8A	108	.6
C3—C4—C5		121.3 (3)	01—C	O1—C8—H8B 108.6		
C3—C4—Cl1		119.6 (2)	С7—С	8—H8B	108.6	
C5—C4—Cl1		119.0 (2)	H8A—	-C8—H8B	107	.6
C2—C1—C6		119.7 (3)	С7—О	3—Fe1 ^{iv}	139	.91 (16)
C2—C1—H1 120.1		H1W-	H1W—O1W—H2W 112			

Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) x, -y+1/2, z+1/2; (iii) -x, -y+1, -z+1; (iv) -x, y-1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
$O1W$ — $H1W$ ··· $O1^{v}$	0.82	2.41	3.051 (3)	135
O1W—H2W···O3 ⁱⁱⁱ	0.82	2.08	2.797 (3)	145
Symmetry codes: (v) x , $-y+3/2$, $z+1/2$; (iii) $-x$, $-y+1$, $-z+1$.				

